Alsaadi, B. M., Williams, R. J. P. \& Woodworth, R. C. (1981). J. Inorg. Biochem. 15, 1-10.

Bates, G. W. (1981). The Biochemistry and Physiology of Iron, edited by P. Saltman \& J. Hegenauer, pp. 3-18. New York: Elsevier.
Carrano, C. J., Spartalian, K., Appa Rao, G. V. N., Pecoraro, V. L. \& Sundaralingam, M. (1985). J. Am. Chem. Soc. 107, 1651-1658.
Chasteen, N. D. (1977). Coord. Chem. Rev. 22, 1-36.
Cotton, F. A., Hazen, E. E., Day, V. W., Larsen, S., Norman, J. G., Wong, S. T. K. \& Johnson, K. H. (1973). J. Am. Chem. Soc. 95, 2367-2369.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Curtis, R. M. \& Pasternak, R. A. (1955). Acta Cryst. 8, 675-681.
Feeney, R. E., Osuga, D. T., Meares, C. F., Babin, D. R. \& Penner, M. H. (1983). Structure and Function of Iron Storage and Transport Proteins, edited by I. Urushizaki, P. Aisen \& I. Listowsky, pp. 231-240. New York: Elsevier.
Gaber, B. P., Miskowsii, V. \& Spiro, T. (1974). J. Am. Chem. Soc. 96, 6868-6873.

Gelb, M. H. \& Harris, D. C. (1980). Arch. Biochem. Biophys. 200, 93-98.
Harris, D. C., Gray, G. A. \& Aisen, P. (1974). J. Biol. Chem. 249, 5261-5264.
Jeltsh, J. M. \& Champon, P. (1982). Eur. J. Biochem. 122, 291-295.
Metz-Boutique, M. H., Jolles, J., Mazurier, J., Schoentgen, F., Legrand, D., Spik, G., Montreuil, J. \& Jolles, P. (1984). Eur. J. Biochem. 145, 659-676.
Pecoraro, V. L., Harris, W. R., Carrano, C. J. \& Raymond, K. N. (1981). Biochemistry, 20, 7033-7039.

Riordan, J. F. (1979). Mol. Cell. Biochem. 26, 71-92.
Schlabach, M. R. \& Bates, G. W. (1975). J. Biol. Chem. 250, 2182-2188.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Yang, F., Lum, J. B., McGill, J. R., Moore, C. M., Naylor, S. L., Van Bragt, P. H., Baldwin, W. D. \& Bowman, B. h. (1984). Proc. Natl Acad. Sci. USA, 81, 2752-2756.

Zweier, J. L., Peisach, J. \& Mims, W. B. (1982). J. Biol. Chem. 257, 10314-10316.

Pentacyclo[19.3.1.1 $\left.1^{2,6} \cdot 1^{9,13} \cdot 1^{14,18}\right]$ octacosa$\mathbf{1 (2 5) , 2 , 4 , 6 (2 8) , 9 , 1 1 , 1 3 (2 7) , 1 4 , 1 6 , 1 8 (2 6) , 2 1 , 2 3 - d o d e c a e n e ~ ([2 . 0 . 2 . 0] - m - C y c l o p h a n e) ~}$

By Robert B. Bates,* Shannath L. Merbs, Richard B. Ortega and James J. White Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA

(Received 2 January 1986; accepted 14 March 1986)

Abstract

C}_{28} \mathrm{H}_{24}, M_{r}=360 \cdot 5\), orthorhombic, Pbca, $a=8.968$ (4),$\quad b=12.337$ (3),$\quad c=36.75$ (1) $\AA, \quad V=$ 4066 (3) $\AA^{3}, \quad Z=8, \quad D_{x}=1.18 \mathrm{~g} \mathrm{~cm}^{-3}, \quad D_{m} \quad$ not measured, Mo $K \alpha, \lambda=0.71073 \AA, \mu=0.62 \mathrm{~cm}^{-1}$, $F(000)=1536, T=295 \mathrm{~K}$, final $R=0.044$ for 2175 observed reflections. The conformation of the title compound in the crystalline state is established by an X-ray study as being one which approaches D_{2} symmetry, proposed to predominate for the compound in solution on the basis of NMR studies. The angles of twist between aromatic rings in the biphenyl systems are $46.8(2)$ and $52.1(2)^{\circ}$ rather than $\sim 30^{\circ}$ as proposed for the molecule in solution or 89.9° as observed in an X-ray study of a related compound.

Introduction. The title compound (1), first prepared by Vögtle (1969), was noted by Leach \& Reiss (1978) to have aromatic protons absorbing unusually far upfield in the NMR, and an 'anti' conformation (1a) was proposed to predominate in solution to fit this finding. In 1981 (Olsson, Tanner, Thulin, Wennerström \&

* To whom correspondence should be addressed.

Liljefors, 1981), the NMR spectrum was reinterpreted as showing a twisted D_{2} conformation ($1 b$) to predominate, and variable-temperature NMR behavior was noted and rationalized in terms of equilibrating enantiomeric D_{2} forms. The angle of twist between adjacent aromatic rings was estimated to be about 30°. An X-ray study on the corresponding molecule with methoxyl groups in the 2 positions and methyl groups in the 5 positions found D_{2} symmetry with twist angles of 89.9° between adjacent aromatic rings (Kaneda et al., 1985). We recently found a better synthetic route to (1) (and many other cyclophanes) (Bates, White, Kane \& Mishra, 1986), and when this compound was found to crystallize well, we performed an X-ray study on it to determine its conformation in the solid state.

Experimental. Colorless crystals grown by slow evaporation from pentane at 263 K . Crystal dimensions $0.5 \times 0.5 \times 0.5 \mathrm{~mm}$. Syntex $P 2_{1}$ diffractometer. Cell constants from 25 reflections with $13 \leq 2 \theta \leq 27^{\circ}$. Systematic absences: $0 k l, k=2 n ; h 0 l, h=2 n ; h k 0$, $h=2 n .2 \theta_{\text {max }}=50^{\circ}$. Range of $h k l: 0 \rightarrow 10,0 \rightarrow 14,0 \rightarrow 43$. Two check reflections every 98 data points showed 3.6% average decay, so linear decay correction applied. No absorption correction. 2175 of 3583 reflections with $I>3 \sigma(I)$ used in F^{2} full-matrix refinement, $R_{\text {int }}=$ $0 \cdot 036$. Structure solved by MULTAN80 (Main et al., 1980) using 288 highest E values; all non-H atoms found in first E map. Refinement of non-H atoms with isotropic temperature factors gave $R=0 \cdot 13$; final refinement (253 parameters) of non- H atoms with anisotropic temperature factors after adding H atoms in calculated positions with isotropic temperature factors of $5.0 \AA^{2}, R=0.044, w R=0.049, S=1.8$, weighting scheme of Corfield, Doedens \& Ibers (1967), with $p=0.03 . \quad(\Delta / \sigma)_{\text {max }}=0.1 . \quad \Delta \rho=-1 \cdot 0 \rightarrow 1 \cdot 0 \mathrm{e}^{-3}$. No anomalous-dispersion corrections. Atomic scattering factors from Cromer \& Waber (1974). Programs SDP (Frenz, 1978), including plotter program ORTEPII (Johnson, 1976), run on PDP 11/34a.

Discussion. Fig. 1 shows two views of a molecule of (1), Table 1 lists the final positional and isotropic thermal parameters, and Table 2 gives bond distances and bond angles.* The molecules in the crystal are in twisted conformations (1b) with approximate D_{2} symmetry as found in solution by Olsson et al. (1981). Each unit cell contains four molecules of each enantiomer.

How closely the moiecules approach the D_{2} symmetry observed for the analog with 2-methoxyls and 5 -methyls (Kaneda et al., 1985) can be seen by examining the parameters which would be the same with this symmetry. In Table 2, averaged distances and angles are given for each group of bonds which would be equivalent if the molecule had D_{2} symmetry, since all the values which would be the same were within three standard deviations of the averaged values. Torsion angles $\mathrm{C}(3 a)-\mathrm{C}(7 a)-\mathrm{C}(7 d)-\mathrm{C}(3 d)=-63.7(2)^{\circ}$ and $\mathrm{C}(3 b)-\mathrm{C}(7 b)-\mathrm{C}(7 c)-\mathrm{C}(3 c)=-63.5(2)^{\circ}$ are also within experimental error of one another. However, other torsion angles show the conformation to be considerably more than experimental error away from having D_{2} symmetry: $\mathrm{C}(2 a)-\mathrm{C}(3 a)-\mathrm{C}(7 a)-\mathrm{C}(7 d)=$ 79.7 (2), $\quad \mathrm{C}(2 b)-\mathrm{C}(3 b)-\mathrm{C}(7 b)-\mathrm{C}(7 c)=95.0$ (2), $\mathrm{C}(2 c)-\mathrm{C}(3 c)-\mathrm{C}(7 c)-\mathrm{C}(7 b)=84 \cdot 1$ (2), and $\mathrm{C}(2 d)-$ $\mathrm{C}(3 d)-\mathrm{C}(7 d)-\mathrm{C}(7 a)=94 \cdot 1(2)^{\circ}$. In addition, the angles of twist between the benzene rings within

[^0]Table 1. Positional parameters and their e.s.d.'s

$B_{\text {eq }}=8 \pi^{2}\left(U_{11}+U_{22}+U_{33}\right) / 3$.				
	x	y	z	$B_{\text {eq }}\left(\dot{\AA}^{2}\right)$
C(1a)	1.2440 (3)	-0.0828 (2)	0.17100 (5)	3.30 (4)
C(1b)	1.3315 (2)	-0.0409 (2)	$0 \cdot 13950$ (5)	3.42 (4)
C(1c)	0.9309 (2)	-0.0114 (2)	0.07899 (5)	3.45 (4)
C(1d)	0.8912 (2)	0.0598 (2)	$0 \cdot 11005$ (6)	3.34 (4)
C(2a)	1.1436 (2)	-0.0152 (2)	$0 \cdot 18884$ (5)	$3 \cdot 37$ (4)
C(2b)	1.3304 (3)	-0.0956 (2)	$0 \cdot 10623$ (6)	3.70 (5)
$\mathrm{C}(2 c)$	1.0634 (3)	0.0050 (2)	0.05988 (5)	3.76 (5)
C(2d)	0.8477 (2)	0.0146 (2)	0.14299 (6)	3.47 (4)
C(3a)	1.0524 (3)	-0.0530 (2)	0.21679 (5)	3.58 (4)
C(3b)	1.4020 (2)	-0.0545 (2)	0.07585 (6)	$4 \cdot 16$ (5)
C(3c)	$1 \cdot 1114$ (3)	-0.0670 (2)	0.03321 (5)	$4 \cdot 25$ (5)
C(3d)	0.8183 (2)	0.0771 (2)	0.17342 (6)	3.72 (5)
C(4a)	1.0685 (3)	-0.1594 (2)	0.22772 (6)	4.53 (5)
C(4b)	1.4783 (3)	0.0425 (2)	0.07924 (6)	$5 \cdot 15$ (6)
$\mathrm{C}(4 \mathrm{c}$)	1.0220 (3)	-0.1544 (2)	0.02503 (6)	$5 \cdot 19$ (6)
C(4d)	0.8295 (3)	0.1889 (2)	$0 \cdot 17029$ (6)	4.27 (5)
C(5a)	$1 \cdot 1716$ (3)	-0.2263 (2)	0.21115 (6)	$5 \cdot 17$ (6)
C(5b)	1.4835 (3)	0.0966 (2)	$0 \cdot 11177$ (7)	5.56 (6)
C(5c)	0.8893 (3)	0.1708 (2)	0.04277 (7)	5.53 (6)
C(5d)	0.8726 (3)	0.2354 (2)	0.13781 (7)	4.41 (5)
C(6a)	1.2570 (3)	-0.1892 (2)	$0 \cdot 18256$ (6)	4.45 (5)
C(6b)	1.4082 (3)	0.0559 (2)	0.14170 (6)	4.49 (5)
$\mathrm{C}(6 \mathrm{c})$	$0 \cdot 8440$ (3)	-0.1007 (2)	0.06995 (6)	4.41 (5)
C (6d)	0.9039 (3)	0.1718 (2)	$0 \cdot 10777$ (6)	4.04 (5)
$\mathrm{C}(7 a)$	0.9343 (3)	0.0187 (2)	0.23315 (6)	4.36 (5)
C (7b)	1.3862 (3)	-0.1071 (2)	0.03916 (6)	$5 \cdot 15$ (6)
$\mathrm{C}(7 \mathrm{c})$	1.2630 (3)	-0.0540 (2)	0.01621 (6)	$5 \cdot 22$ (6)
C (7d)	0.7913 (3)	0.0258 (2)	$0 \cdot 21001$ (6)	$4 \cdot 62$ (5)

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$
Numbers are average values for the bonds indicated and bonds which would be equivalent to these if the molecule possessed D_{2} symmetry. Numbers in parentheses are e.s.d.'s in the least significant digits.

$\mathrm{C}(1 a)-\mathrm{C}(1 b)$	$1.487(2)$	$\mathrm{C}(1 b)-\mathrm{C}(1 a)-\mathrm{C}(2 a)$	$120.2(2)$
$\mathrm{C}(1 a)-\mathrm{C}(2 a)$	$1.393(2)$	$\mathrm{C}(1 b)-\mathrm{C}(1 a)-\mathrm{C}(6 a)$	$121.3(2)$
$\mathrm{C}(1 a)-\mathrm{C}(6 a)$	$1.386(2)$	$\mathrm{C}(2 a)-\mathrm{C}(1 a)-\mathrm{C}(6 a)$	$118.3(2)$
$\mathrm{C}(2 a)-\mathrm{C}(3 a)$	$1.388(2)$	$\mathrm{C}(1 a)-\mathrm{C}(2 a)-\mathrm{C}(3 a)$	$121.9(2)$
$\mathrm{C}(3 a)-\mathrm{C}(4 a)$	$1.382(3)$	$\mathrm{C}(2 a)-\mathrm{C}(3 a)-\mathrm{C}(4 a)$	$118.2(2)$
$\mathrm{C}(3 a)-\mathrm{C}(7 a)$	$1.505(3)$	$\mathrm{C}(2 a)-\mathrm{C}(3 a)-\mathrm{C}(7 a)$	$120.9(2)$
$\mathrm{C}(4 a)-\mathrm{C}(5 a)$	$1.376(3)$	$\mathrm{C}(4 a)-\mathrm{C}(3 a)-\mathrm{C}(7 a)$	$120.6(2)$
$\mathrm{C}(5 a)-\mathrm{C}(6 a)$	$1.382(3)$	$\mathrm{C}(3 a)-\mathrm{C}(4 a)-\mathrm{C}(5 a)$	$120.8(2)$
$\mathrm{C}(7 a)-\mathrm{C}(7 d)$	$1.539(3)$	$\mathrm{C}(4 a)-\mathrm{C}(5 a)-\mathrm{C}(6 a)$	$120.4(2)$
		$\mathrm{C}(1 a)-\mathrm{C}(6 a)-\mathrm{C}(5 a)$	$120.3(2)$
		$\mathrm{C}(3 a)-\mathrm{C}(7 a)-\mathrm{C}(7 d)$	$112.6(2)$

Fig. 1. ORTEP views of a molecule of the title compound, with 50% probability thermal ellipsoids.
biphenyl groupings differ: 52.1 (2) ${ }^{\circ}$ between rings a and b, and $46.8(2)^{\circ}$ between rings c and $d\left[c f . \sim 30^{\circ}\right.$ proposed for the molecule in solution by Olsson et al. (1981) and 89.9° observed for the tetramethoxyltetramethyl analog by Kaneda et al. (1985)]. No doubt this angle is much larger in the latter compound to accommodate the bulky methoxyl groups.

The right-hand view of the molecule in Fig. 1 shows how the protons on $\mathrm{C}(2 a)-\mathrm{C}(2 d)$ are magnetically shielded by an aromatic ring across the large ring. Using the equations of Johnson \& Bovey (1958), we have calculated the upfield shift expected for the conformation observed in the crystal to be just what is observed in solution by NMR, so the conformation is essentially the same in both media, and probably represents the lowest energy minimum for the molecule.

References

Bates, R. B., White, J. J., Kane, V. V. \& Mishra, P. K. (1986). Submitted for publication.

Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197-204.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography. Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Frenz, B. A. (1978). Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.

Johnson, C. E. \& Bovey, F. A. (1958). J. Chem. Phys. 29, 1012-1014.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Kaneda, T., Umeda, S., Tangawa, H., Misumi, S., Kai, Y., Morii, H., Miki, K. \& Kasai, N. (1985). J. Am. Chem. Soc. 107, 4802-4803.
Leach, D. N. \& Reiss, J. A. (1978). J. Org. Chem. 43, 2484-2487.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Olsson, T., Tanner, D., Thulin, B., Wennerström, O. \& LILJEFORS, T. (1981). Tetrahedron, 37, 3473-3483.
VöGtle, F. (1969). Justus Liebigs Ann. Chem. 728, 17-20.

Acta Cryst. (1986). C42, 1201-1204

Structure of $\mathbf{3}^{\prime}$-Acetamido-2,2-dichloro-4',5'-dimethylacetophenone

By D. Chattopadhyay, T. Banerjee and S. K. Mazumdar
Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Calcutta-700 064, India

G. Podder
Department of Chemistry, School of Tropical Medicine, Calcutta, India
and S. Kashino and M. Haisa
Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan

(Received 21 January 1986; accepted 24 March 1986)

Abstract

C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}, M_{r}=274 \cdot 15\), monoclinic, $P 2_{1} / n, \quad a=17.645$ (2), $\quad b=14.645$ (1), $\quad c=$ 10.5955 (7) $\AA, \quad \beta=107 \cdot 191$ (7) ${ }^{\circ}, \quad V=2615.7$ (4) \AA^{3}, $Z=8, \quad D_{m}=1.41, \quad D_{x}=1.39 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=$ $1.5418 \AA, \mu=44.75 \mathrm{~cm}^{-1}, F(000)=1136, T=295 \mathrm{~K}$, final $R=0.067$ for 3306 observed reflections. The acetyl groups in both the crystallographically independent molecules are in the endo conformation, whereas there is a conformational difference about the C(phenyl)-C(keto) bonds of the dichloroacetyl groups of the two molecules. The π-electron cloud in the keto bonds of the dichloroacetyl groups are more localized than those in related compounds. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into infinite chains.

Introduction. The study of the structure-activity relationship of the widely used antibiotic
chloramphenicol established the importance of the dichloroacetyl group (Dennis \& Berberian, 1954). Acetanilide and its various derivatives possess a variety of antifungal, antibacterial, analgesic and anaesthetic activities (Burger, 1960; Banerjee, 1983).

The structure of the title compound was analysed as part of our studies on dichloroacetophenones and acetanilides (Chattopadhyay, Banerjee, Mazumdar \& Podder, 1985; Haisa, Kashino, Ueno, Shinozaki \& Matsuzaki, 1980).

Experimental. Pale-yellow plate-shaped crystals (from ethanol); density by flotation (benzene - bromoform); crystal size: $0.35 \times 0.27 \times 0.25 \mathrm{~mm} ;$ symmetry from oscillation and Weissenberg photographs, $P 2_{1} / n$ (systematic absences: $0 k 0, k$ odd; $h 0 l, h+l$ odd); Rigaku AFC-5 four-circle diffractometer equipped with rotating anode; Ni -filtered $\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation; cell © 1986 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom coordinates, and a packing diagram have been deposited with the British Libary Lending Division as Supplementary Publication No. SUP 42916 (17 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

